splitting files, adding entropy test

master
mxmehl 8 years ago
parent 6af9dfb513
commit a32447a27b

@ -55,7 +55,7 @@ foreach(d = 1:nrow(issues), .packages = c("stringr"), .combine=rbind) %dopar% {
tweets_curday <- tweets[tweets[, "created_at"] == curdate, ]
for(t in 1:nrow(tweets_curday)){
# cat(paste("Starting tweet", t, "of",as.character(curdate),"\n"), file="issuecomp-analysis.log", append=TRUE)
# cat(paste("Starting tweet", t, "of",as.character(curdate),"\n"), file="issuecomp-analysis.log", append=TRUE)
# Select tweet's text, make it lowercase and remove hashtag indicators (#)
curtext <- as.character(tweets_curday$text[t])
curtext <- str_replace_all(curtext, "#", "")
@ -67,7 +67,7 @@ foreach(d = 1:nrow(issues), .packages = c("stringr"), .combine=rbind) %dopar% {
curissue <- issueheads[i]
curtags <- as.character(issuelist[[curissue]])
curfile <- str_c(id_folder,"/",curissue,".csv")
# Now test all tags of a single issue
for(s in 1:length(curtags)) {
curtag <- curtags[s]
@ -93,7 +93,7 @@ foreach(d = 1:nrow(issues), .packages = c("stringr"), .combine=rbind) %dopar% {
} else {
curdistance <- 1
}
# Match current tweet with tag. If >= 5 letters allow 1 changed letter, if >=8 letters allow also 1 (Levenshtein distance)
tags_found <- NULL
# Match the tweet with each variation of tagexpand
@ -104,19 +104,19 @@ foreach(d = 1:nrow(issues), .packages = c("stringr"), .combine=rbind) %dopar% {
curtag <- curtag[1]
if(tags_found == TRUE) {
# # Raise number of findings on this day for this issue by 1
# issues[d,curissue] <- issues[d,curissue] + 1
#
# # Add issue and first matched tag of tweet to tweets-DF
# oldissue <- tweets[tweets[, "id_str"] == curid, "issue"]
# tweets[tweets[, "id_str"] == curid, "issue"] <- str_c(oldissue, curissue, ";")
# oldtag <- tweets[tweets[, "id_str"] == curid, "tags"]
# tweets[tweets[, "id_str"] == curid, "tags"] <- str_c(oldtag, curtag, ";")
# # Raise number of findings on this day for this issue by 1
# issues[d,curissue] <- issues[d,curissue] + 1
#
# # Add issue and first matched tag of tweet to tweets-DF
# oldissue <- tweets[tweets[, "id_str"] == curid, "issue"]
# tweets[tweets[, "id_str"] == curid, "issue"] <- str_c(oldissue, curissue, ";")
# oldtag <- tweets[tweets[, "id_str"] == curid, "tags"]
# tweets[tweets[, "id_str"] == curid, "tags"] <- str_c(oldtag, curtag, ";")
# Add information to file for function viewPatternMatching
write(str_c(curdate,";\"",curid,"\";",curissue,";",curtag), curfile, append = TRUE)
# cat(paste("Match!\n"), file="issuecomp-analysis.log", append=TRUE)
# data.frame(date=curdate, issue=curissue)
# cat(paste("Match!\n"), file="issuecomp-analysis.log", append=TRUE)
# data.frame(date=curdate, issue=curissue)
break # next issue, no more tags from same issue
}
else {
@ -182,60 +182,6 @@ for(r in 1:nrow(results)) {
# SAVING ------------------------------------------------------------------
save(tweets, file="tweets_tagged.RData")
save(issues, file="issues.RData")
# SOME TESTS --------------------------------------------------------------
stats <- data.frame(date=drange)
stats$tpd <- 0
# Total number of tweets per day over time
for(r in 1:length(drange)) {
stats$tpd[r] <- length(tweets[tweets[, "created_at"] == drange[r], "id_str"])
}
stats_melt <- melt(stats, id="date")
g1 <- ggplot(data = stats_melt, aes(x=date,y=value,colour=variable, group=variable)) +
geom_line() +
geom_smooth(size=1,formula = y ~ x, method="loess", se=FALSE, color=1)
g1
rm(g1, r)
# Show party percentage of twitter users
acc_parties <- data.frame(party = c("cducsu", "spd", "linke", "gruene"))
acc_parties$btw13 <- c(49.3, 30.6, 10.1, 10.0) # seats of party / 631 seats
acc_parties$twitter <- 0
for(p in 1:nrow(acc_parties)) {
acc_parties$twitter[p] <- round(nrow(acc_df[acc_df$party == as.character(acc_parties$party[p]), ]) / 280 * 100)
}
pie(acc_parties$btw13, col=c("black", "red", "purple", "green"), labels = c("CDU/CSU", "SPD", "Die LINKE", "Bündnis 90/Grüne"), clockwise = T,
main = "Seats of parties in the parliament")
pie(acc_parties$twitter, col=c("black", "red", "purple", "green"), labels = c("CDU/CSU", "SPD", "Die LINKE", "Bündnis 90/Grüne"), clockwise = T,
main = "Percentage of parties' MdBs of all Twitter accounts")
rm(acc_parties, p)
# VISUALS -----------------------------------------------------------------
# Level: days
issues_melt <- melt(issues,id="date")
ggplot(issues_melt,aes(x=date,y=value,colour=variable,group=variable)) + geom_line(size=1)
ggplot(issues_melt,aes(x=date,y=value,colour=variable,group=variable)) + geom_smooth(size=1,method="loess",formula = y ~ x, se=FALSE)
# POSSIBLY USEFUL CODE ----------------------------------------------------
# Limits of list
length(issuelist)
length(issuelist[[2]])
# Select all tweets from current day in drange
tweets_curday <- tweets[tweets[, "created_at"] == drange[5], ]
# Is column a issue counting column?
str_detect(names(issues[2]), "^issue")

@ -0,0 +1,130 @@
require(stringr)
require(reshape2)
require(ggplot2)
require(vars)
# Create dataframes with only non-sensational (i) and sensational (s) issue columns
drop_s <- which(str_detect(names(issues), "^s"))
drop_i <- which(str_detect(names(issues), "^i"))
issues_i <- issues[,-drop_s]
issues_s <- issues[,-drop_i]
# #
# ENTROPY
# #
# Entropy non-sensational issues
issues_i$total <- rowSums(issues_i[2:ncol(issues_i)])
issues_i$entropy <- 0
for(r in 1:nrow(issues_i)) {
curtotal <- as.numeric(issues_i$total[r])
curp <- 0
for(c in 2:ncol(issues_i)) {
curcount <- as.numeric(issues_i[r,c])
curp[c] <- curcount / curtotal
}
curp <- curp [2:length(curp)-2]
curdrop <- which(curp==0)
curp <- curp[-curdrop]
issues_i$entropy[r] <- sum(-1 * curp * log(curp))
}
# Entropy sensational issues
issues_s$total <- rowSums(issues_s[2:ncol(issues_s)])
issues_s$entropy <- 0
for(r in 1:nrow(issues_s)) {
curtotal <- as.numeric(issues_s$total[r])
curp <- 0
for(c in 2:ncol(issues_s)) {
curcount <- as.numeric(issues_s[r,c])
curp[c] <- curcount / curtotal
}
curp <- curp [2:length(curp)-2]
curdrop <- which(curp==0)
curp <- curp[-curdrop]
issues_s$entropy[r] <- sum(-1 * curp * log(curp))
}
# Compare total tweets vs. total issue findings
stats_total <- data.frame(date=drange)
stats_total$tpd <- 0
stats_total$ipd <- issues_i$total
stats_total$spd <- issues_s$total
# Total number of tweets per day over time
for(r in 1:length(drange)) {
stats_total$tpd[r] <- length(tweets[tweets[, "created_at"] == drange[r], "id_str"])
}
stats_melt <- melt(stats_total, id="date")
g1 <- ggplot(data = stats_melt, aes(x=date,y=value,colour=variable, group=variable)) +
geom_line()+
geom_smooth(size=1,formula = y ~ x, method="loess", se=FALSE, color=1)
g1
# Visuals for entropy in time series
stats_entropy <- data.frame(date=drange)
stats_entropy$entropy <- issues_i$entropy
stats_entropy <- melt(stats_entropy, id="date")
g1 <- ggplot(data = stats_entropy, aes(x=date,y=value,colour=variable, group=variable)) +
geom_line() +
geom_smooth(size=1,formula = y ~ x, method="loess", se=FALSE, color=1)
g1
# SOME TESTS --------------------------------------------------------------
stats <- data.frame(date=drange)
stats$tpd <- 0
# Total number of tweets per day over time
for(r in 1:length(drange)) {
stats$tpd[r] <- length(tweets[tweets[, "created_at"] == drange[r], "id_str"])
}
stats_melt <- melt(stats, id="date")
g1 <- ggplot(data = stats_melt, aes(x=date,y=value,colour=variable, group=variable)) +
geom_line() +
geom_smooth(size=1,formula = y ~ x, method="loess", se=FALSE, color=1)
g1
rm(g1, r)
# Show party percentage of twitter users
acc_parties <- data.frame(party = c("cducsu", "spd", "linke", "gruene"))
acc_parties$btw13 <- c(49.3, 30.6, 10.1, 10.0) # seats of party / 631 seats
acc_parties$twitter <- 0
for(p in 1:nrow(acc_parties)) {
acc_parties$twitter[p] <- round(nrow(acc_df[acc_df$party == as.character(acc_parties$party[p]), ]) / 280 * 100)
}
pie(acc_parties$btw13, col=c("black", "red", "purple", "green"), labels = c("CDU/CSU", "SPD", "Die LINKE", "Bündnis 90/Grüne"), clockwise = T,
main = "Seats of parties in the parliament")
pie(acc_parties$twitter, col=c("black", "red", "purple", "green"), labels = c("CDU/CSU", "SPD", "Die LINKE", "Bündnis 90/Grüne"), clockwise = T,
main = "Percentage of parties' MdBs of all Twitter accounts")
rm(acc_parties, p)
# VISUALS -----------------------------------------------------------------
# Level: days
issues_melt <- melt(issues,id="date")
ggplot(issues_melt,aes(x=date,y=value,colour=variable,group=variable)) + geom_line(size=1)
ggplot(issues_melt,aes(x=date,y=value,colour=variable,group=variable)) + geom_smooth(size=1,method="loess",formula = y ~ x, se=FALSE)
# POSSIBLY USEFUL CODE ----------------------------------------------------
# Limits of list
length(issuelist)
length(issuelist[[2]])
# Select all tweets from current day in drange
tweets_curday <- tweets[tweets[, "created_at"] == drange[5], ]
# Is column a issue counting column?
str_detect(names(issues[2]), "^issue")

Binary file not shown.
Loading…
Cancel
Save